
FreeBSD Advanced
Security Features

Robert N. M. Watson

Security Research
Computer Laboratory

University of Cambridge

19 May, 2007



19 May 2007 2

Introduction

● Welcome!

– Introduction to some of the advanced security 
features in the FreeBSD operating system

● Background

– Introduce a series of access control and audit 
security features used to manage local security

– Features appeared between FreeBSD 4.0 and 
FreeBSD 6.2, and build on the UNIX security model

– To talk about new security features, we must 
understand the FreeBSD security architecture



19 May 2007 3

Post-UNIX Security Features

● Securelevels
● Pluggable 

authentication 
modules (OpenPAM)

● Crypto library and 
tools (OpenSSL)

● Resource limits
● Jails, jail securelevels
● GBDE, GELI

● IPFW, PF, IPFilter
● KAME IPSEC, 

FAST_IPSEC
● Access control lists 

(ACLs)
● Security event audit
● Mandatory access 

control (MAC)
● 802.11 security



19 May 2007 4

Brief History of the
TrustedBSD Project

● TrustedBSD Project founded in April, 2000

– Goal to provide trusted operating system 
extensions to FreeBSD

– DARPA funding began in July, 2001

– Continuing funding from a variety of government 
and industry sponsors

– Work ranges from immediately practical to research

– While many of these features are production-
quality, some are still under development

– Scope now also includes Apple's Mac OS X



19 May 2007 5

FreeBSD Security Architecture



19 May 2007 6

FreeBSD Security Architecture

● FreeBSD's security architecture is the UNIX 
security architecture

– Entirely trusted monolithic kernel

– UNIX process model

– Kernel UIDs/GIDs driven by user-space user mode

– Privileged root user

– Various forms of access control (permissions, ...)

● Security features discussed here extend this 
security model in a number of ways



19 May 2007 7

Kernel and User Processes

Kernel

User
Process

User
Process

User
Process ...

F
ile

 s
ys

te
m

 a
cc

es
s

sy
st

em
 c

al
l

Inter-process
communication



19 May 2007 8

Security Architecture:
Kernel Access Control Policy

● Objects owned by a user and group
● Mandatory inter-user protections

– No inter-user process control (debugging, ...)

– Only owner of an object can control its protections

– Special protections for setuid, setgid processes

● Discretionary protections

– File permissions and ACLs allow owner to grant 
specific rights to other users and groups

– Used to protect both system and user data



19 May 2007 9

Security Architecture:
The User-space Security Model

● Low-level kernel primitives provide foundation:

– Process isolation

– Process credentials and privilege

– Privilege escalation through setuid/setgid

– Object ownership and access control

● No mention of password files, logging in, 
remote access, home directories, etc.

– All implemented as a user-space software layer 
using kernel primitives



19 May 2007 10

Security Architecture:
Authentication and Remote Access
● Kernel provides low-level networking primitives

– Concepts such as telnet, SSH entirely in user-
space

– Map network I/O into simulated tty input

● User authentication entirely in user-space

– Pluggable Authentication Modules (PAM) invoked 
by remote access daemons

– Kernel UIDs and GIDs set by daemon at login

– Hence cache consistency issues between /etc files 
and running kernel state



19 May 2007 11

Security Architecture: Conclusion

● Layered UNIX security architecture

– Kernel provides low-level process, process 
credential, and system services

– User-space libraries and tools implement users, 
authentication, remote access

● Security features we discuss will extend this 
basic functionality

– Increased functionality

– Increased flexibility



19 May 2007 12

Access Control Lists



19 May 2007 13

Access Control Lists (ACLs)

● Extend UNIX file permissions

– Allow flexible assignment of rights by and for users

– Required by Orange Book C2, CC CAPP

● ACLs supported in most operating systems

– POSIX.1e ACLs (Solaris, IRIX, FreeBSD, Linux)

– NT ACLs (Windows, NFSv4, Mac OS X, ZFS)

● FreeBSD UFS implements POSIX.1e ACLs

– NT ACL mapping provided by Samba



19 May 2007 14

Configuring UFS2 ACLs

● UFS2 ACLs stored in extended attributes
● Compile UFS ACL support into kernel

– options UFS_ACL

– Enabled by default in GENERIC kernel

● ACLs must be administratively enabled for each 
file system they will be used with

– tunefs -a enable

– File system must be unmounted or mounted read-
only (best done from single-user mode)



19 May 2007 15

UNIX File Permissions

● Permission mask in file mode

– Assigns rights to file owner, group, and other

– Possible rights: read, write, execute

● Certain other special bits in file mode

– setuid: process takes on UID of file when executing

– setgid: process takes on GID of file when executing

– sticky bit limits unlink rights in directory (/tmp)

● Expressiveness of file permissions very limited

– Only administrator can modify group membership



19 May 2007 16

POSIX.1e ACLs

● Allow file owner to assign rights for additional 
users and groups

– UNIX permissions for owner, group, other

– POSIX.1e ACL entries assign rights for for 
additional users and additional groups

– Directories have an optional default ACL
● Set ACLs on new files or sub-directories in subtree

● POSIX.1e provides a mask ACL entry to 
support file mode compatibility for applications



19 May 2007 17

Example ACL

User

Group

Other

rw-

r--

---

User

Group

Mask

[owner]

[owner]

rw-

r--

rw-

User robert rw-

Group www r--

Other ---



19 May 2007 18

Example ACL

cinnamon% getfacl without_acl
#file:without_acl
#owner:0
#group:0
user::rw-
group::r--
other::---

cinnamon% getfacl with_acl
#file:with_acl
#owner:0
#group:0
user::rw-
user:robert:rw-
group::r
group:www:r--
mask::rw-
other::---

● One file with only a 
basic ACL (UNIX 
permission mask)

● One file with an 
extended ACL

– One additional user

– One additional group

– Mask granting at most 
read/write to groups 
and additional users



19 May 2007 19

ACLs on Newly Created
Files and Directories

● Directories have access and default ACLs
● If the parent directory has only a basic ACL, 

UNIX creation rules apply
● If the parent directory has a default ACL, 

special creation rules apply:

– Access ACL of child will be default ACL of parent 
masked by requested creation mode and umask

– New subdirectories inherit parents' default ACL



19 May 2007 20

ACL Tools

● Modifications to existing commands

– mount(8) – Show when ACLs are enabled

– ls(1) – Show when an ACL is present with “+”

– tar(1) – Back up and restore ACLs on files

● New ACL commands

– getfacl(1) – Retrieve the ACL on one or more files

– setfacl(1) – Set the ACL on one or more files



19 May 2007 21

ACL Documentation

● Man pages

– getfacl(1), setfacl(1)

● FreeBSD Handbook chapter “File System 
Access Control Lists”



19 May 2007 22

ACL Conclusion

● Access control lists add greater flexibility to 
UNIX file protection model

– Users can assign rights to other users and groups

– Avoid the necessity for administrative involvement 
with users collaborate

– Available in all FreeBSD versions with UFS2

– Backwards compatible with UNIX permissions

– Portable to other UNIX operating systems



19 May 2007 23

Security Event Auditing



19 May 2007 24

Security Event Auditing

● Auditing logs system security events

– Secure, reliable, fine-grained, configurable

● A variety of uses including

– Post-mortem analysis

– Intrusion detection

– Live system monitoring, debugging

● Required by Orange Book, Common Criteria 
CAPP evaluations

● Found in most commercial UNIX systems



19 May 2007 25

Audit Logs, Records, and Events

● Audit log files are called “trails”, contain records
● Audit records describe individual events

– Attributable (to an authenticated user)

– Non-attributable (no authenticated user)

– Selected (configured to be audited)

● Most audit events fall into three classes

– Access control

– Authentication

– Security management



19 May 2007 26

What events can be audited?

● Access control

– System calls checking for super user privilege

– System calls with file system access control checks
● Including path name lookup!

– Login access control decisions

● Authentication, Account Management

– Password changes, successful authentication, 
failed authentication, user administration

● Audit administration events



19 May 2007 27

FreeBSD Security Event
Auditing Architecture

● Audit records describe security events
● Audit records managed by kernel audit engine
● Audit daemon manages trails, configuration
● Sun's BSM audit trail file format and API
● Administrators control granularity of logging
● Kernel and privileged processes may submit 

records to audit trail
● UNIX DAC permissions protect audit log



19 May 2007 28

BSM Audit Record Format

Record header

Subject token

Return token

Trailer token

0 or more variable
argument tokens...

(paths, ports, ...)

<record version="10" event="OpenSSH login" modifier="0" 
time="Fri May 18 04:19:56 2007" msec="274" >
<subject audit-uid="robert" uid="robert" gid="robert" 
ruid="robert" rgid="robert" pid="44835" sid="44835" 
tid="42666 24.114.252.226" />
<text>successful login robert</text>
<return errval="success" retval="0" />
</record>

<record version="10" event="execve(2)" modifier="0" 
time="Fri May 18 07:04:15 2007" msec="933" >
<exec_args><arg>pine</arg></exec_args>
<path>/usr/local/bin/pine</path>
<attribute mode="555" uid="root" gid="wheel" fsid="90" 
nodeid="71201" device="336464" />
<subject audit-uid="robert" uid="robert" gid="robert" 
ruid="robert" rgid="robert" pid="51933" sid="51927" 
tid="49811 24.114.252.226" />
<return errval="success" retval="0" />
</record>



19 May 2007 29

Audit Selection

● Potential for audit record volume huge

– Terabytes/hour on busy, fully audited system

● Two key points for audit record selection

– Audit pre-selection to limit audit records created

– Audit post-selection, or reduction, to eliminate 
undesired records after creation

● FreeBSD support both models

– Administrator can apply filters to users at login time

– Administrator can use tools to reduce trails later



19 May 2007 30

Audit Trail Reduction

● Reduction selects records from audit trails

– E.g., for long-term archiving or immediate 
inspection

● auditreduce(8) accepts a trail file as input, and 
generates a reduced trail stream as output

– Criteria for record selection include user ID, date or 
time of event, type of event, or affected object

● Can output to a file or create a pipeline

– Reducing a large audit trail to just login/logout data

– Piping output to praudit(8) for printing 



19 May 2007 31

process

process

Audit Pipes

● Historically, audit for 
post-mortem analysis

● Today, for intrusion 
detection / monitoring

● Audit pipes provide 
live record feed

– Lossy queue

– Discrete audit records 

– Independent streams

Audit
subsystem

queue

File system,
Buffer cache

Audit pipe
queue(s)



19 May 2007 32

Audit Documentation

● Extensive man pages

– audit(4), auditpipe(4)

– audit(8), auditreduce(8), praudit(8), auditd(8)

– audit.log(5), audit_control(5), audit_user(5), ...

● FreeBSD Handbook chapter, “Security Event 
Auditing”

● TrustedBSD audit implementation paper: “The 
FreeBSD Audit System”



19 May 2007 33

Audit: Conclusion

● Powerful tool for tracking and monitoring 
system use

● Fine-grained, reliable, and secure logging of 
user activity

● Now available in FreeBSD 6.2 as an 
experimental feature

● Will be a production feature in FreeBSD 6.3 as 
functionality matures



19 May 2007 34

Mandatory Access Control (MAC)



19 May 2007 35

Mandatory Access Control (MAC)

● Administrator defines mandatory rules under 
which users and processes interact

– Contrast with Discretionary Access Control (DAC)

– File ACLs protect files at the discretion of the owner

● Historically, Multi-Level Security (MLS)

– Data is labelled with sensitivity levels/compartments 
to indicate what protection is required

● Recently, much more broad definition

– “Mandatory” as opposed to a specific policy



19 May 2007 36

TrustedBSD MAC Framework

● Kernel framework that allows policy modules to 
modify the kernel access control policy

– Add new constraints

– Track use of resources

– Attach security labels to objects

● Two general common classes of policies

– Ubiquitous information labelling policies

– Hardening policies



19 May 2007 37

MAC Policies for FreeBSD

● FreeBSD has a number of sample policies

– Labelled: Biba, MLS, LOMAC, partition

– Hardening: portacl, seeotheruids, ugidfw

● Several open source third party policies

– Cryptographically signed binaries

– SEBSD (SELinux FLASK/TE)

– mac_privs

● Several third-part policies built into products



19 May 2007 38

BSD Extended User/Group File 
System Firewall

● Rule-based file system protection policy

– Module name: mac_bsdextended

– Kernel option: options MAC_BSDEXTENDED

● Implements a file access “firewall” rules

– ugidfw(8) management tool is similar to ipfw(8)

– Administrator can use rules to restrict access by 
user or group

– Overrides normal file permissions and ACLs

● No data or subject labelling is required



19 May 2007 39

User/Group File System Firewall

● ugidfw(8) command manages a rule list similar 
to that in network firewals

● Override permissions that would otherwise 
grant rights denied by the firewall policy

● ugidfw set 100 subject uid www object uid 
robert mode rxs

– Deny any access but read, execute, and stat by 
user www on objects owned by user robert



19 May 2007 40

MAC Documentation

● FreeBSD man pages

– mac(4)

– getfmac(8), setfmac(8)

● FreeBSD Handbook chapter, “Mandatory 
Access Control (MAC)”

● TrustedBSD implementation papers

– “The TrustedBSD MAC Framework: Extensible 
Access Control for FreeBSD 5.0”

– “Design and Implementation of the TrustedBSD 
MAC Framework”



19 May 2007 41

Conclusion

● Introduction to FreeBSD Security Architecture
● Several advanced FreeBSD security features

– ACLs

– Audit

– MAC

● Further information can be found in:

– The FreeBSD Handbook

– http://www.TrustedBSD.org


