
The new VVorld
Robert Watson and Bjoern Zeeb

(and thanks to Marko Zec)
The FreeBSD Project

UKUUG Spring Conference 2010

1

OS research and development performed by FreeBSD Project, University of Zagreb, FreeBSD
Foundation, NLNet, and other contributors over a decade

Still a work-in-progress, but exciting technology coming soon

Introduction

• About virtualization

• FreeBSD Jails

• Virtualizing a kernel

• A virtualized network stack

• A few application ideas

2

2

What is virtualization?

3

• Illusion of multiple virtual X on one real X

• Virtual memory address spaces

• VLANs, VPNs, and overlay networks

• Storage volume management

• Virtual machines, OS instances

• ... you can solve any problem with another
level of indirection ...

3

“... a level of indirection...”

Why virtualize?

• Sharing with the illusion of exclusive use

• Consolidation, managed overcommit

• Flexibility in implementation

• Security and robustness

• Administrative delegation

4

4

Virtualization spectrum

• Tradeoffs: scheduler integration, efficient
sharing, overcommit opportunities,
functionality, security/isolation, resource
management, administrative delegation, ...

5

OS access control

UNIX users
SELinux

...

OS virtualization

FreeBSD Jail
Solaris Zones

...

Hypervisors

VMWare
Xen
...

Physical separation

Racks and racks
and racks of

machines

5

Example:
 With OS virtualization you get full scheduler integration, but migration very hard
 With Hypervisors you get really bad scheduling, but migration is relatively easy

OS virtualization

• Single OS kernel instance, many userspaces

• Safe root delegation, various constraints

• Efficient resource sharing with overcommit

• No hypervisor/virtual device overhead

• ISP virtual hosting, server consolidation, ...

6

6

History of FreeBSD Jail

7

1999

2002

2006

2007

2008

2009

Jails merged to FreeBSD 4.x

Virtualized network stack prototype

NLNet/FreeBSD Foundation fund multi-year
VIMAGE development project

Jail-friendly ZFS merged from Open Solaris

Multi-IPv4/v6/no-IP patches;
VNET integration starts

Hierarchical jail support; FreeBSD 8.0 with
highly experimental options VIMAGE shipped

7

Earliest open source OS virtualization we’re aware of

Virtualization work has long timeline

Why change Jail?

8

• Jail is fast, efficient, secure, useful

• But, Jail “subsets” rather than “virtualizes”

• For example: employs chroot() internally

• Some resources subset poorly

• E.g., System V IPC, loopback interface, ...

• Virtualization is a functional improvement

8

Virtualizing OS services
• New abstraction: the virtual instance

• Replicate global objects per-instance

• Multiplex or replicate threads, timers

• Tag subjects with virtual instances

• Consider administrative interfaces

• Examine privileges carefully

• Plan inter-instance plumbing

• How to start and stop instances?

9

9

Virtual kernel
infrastructure

• Sounds complicated, but some new tools

• Virtualized global variables

• Virtualized startup/shutdown

• Virtualized sysctl MIB entries

• Virtualization-enhanced debugging

• Multiplex virtualization onto netisrs

10

10

Virtualized heap

11

Stack1

Kernel

Heap

Kernel

Regular kernel Virtualized heap

Heap2

Heap1

Stack1

Stack2 Stack2

Stack3

11

Goal: make it easy for us to take one of something and make many

Notice that same layout is used for virtual instances as original

Virtual global variables

12

• Tag selected globals as virtual in source

• Placed in different ELF section when linked

• Each VNET instance gets a copy of section

• Thread context carries VNET reference

• Globals mapped to VNET when accessed

• Can compile to regular globals if desired

12

Can compile out during development but still in tree. In fact, default today.

Also valuable for embedded.

13

VNET_DEFINE(struct inpcbhead, ripcb);
VNET_DEFINE(struct inpcbinfo, ripcbinfo);

#define V_ripcb VNET(ripcb)
#define V_ripcbinfo VNET(ripcbinfo)

...

void
rip_init(void)
{

 INP_INFO_LOCK_INIT(&V_ripcbinfo, "rip");
 LIST_INIT(&V_ripcb);

13

Goal: make virtualized programming natural

14

Virtualized boot

SYSINIT

VNET 0 SYSINIT

VNET 1 SYSINIT

Kernel
boot

Create jail
with VNET

Load kernel module with
virtualized components

Portions of previously serialized kernel and
module startup are now per-VNET

14

Tag bits of boot process that now need to be per-VNET.

Module case is interesting, and tricky.

Virtual kernel startup

• Kernel, module startup uses SYSINIT()

• Functions tagged with special ELF section

• Sorted and executed “in order”

• Used for 99% of FreeBSD kernel init

• Some events now need to be virtualized

• Add a new event set, run once per VNET

15

15

16

static void
vnet_igmp_init(const void *unused __unused)
{
 CTR1(KTR_IGMPV3, "%s: initializing", __func__);
 LIST_INIT(&V_igi_head);
}
VNET_SYSINIT(vnet_igmp_init, SI_SUB_PSEUDO,
 SI_ORDER_ANY, vnet_igmp_init, NULL);

static void
vnet_igmp_uninit(const void *unused __unused)
{
 CTR1(KTR_IGMPV3, "%s: tearing down", __func__);
 KASSERT(LIST_EMPTY(&V_igi_head),
 ("igi list not empty; detached?"));
}
VNET_SYSUNINIT(vnet_igmp_uninit, SI_SUB_PSEUDO,
 SI_ORDER_ANY, vnet_igmp_uninit, NULL);

16

Again: goal to make it natural.

Five-character change to each to say “do it virtualized”.

What to virtualize?

• Start with a virtual network stack

• Immediate demand due to Jail limitations

• Zec 2002 prototype

• Validate performance of approach

• Can parallelize over many net modules

• In the future: VIPC, ...

17

17

Virtual network stack

• Jails can have their own network stacks

• TCP/IP socket bindings, routing table,
firewall, IPsec, ...

• Real/virtual interfaces belong to one stack,
but may be assigned to child stacks

• Packets float between stacks as needed

• Arbitrary virtual network topologies OK

18

18

Avoid constructs that require additional copying, context switching, etc.

19

Jail 0

VNET 0

Jail 1

VNET 1

App

epair0bepair0aigb0 bridge0 igb1

App

TCP/IPTCP/IP

App

19

Applications pinned to virtual stacks.
Simple case: assign an ifnet to a jail.
Complex case: virtual interfaces, bridging, firewalls, ...

19

Jail 0

VNET 0

Jail 1

VNET 1

App

epair0bepair0aigb0 bridge0 igb1

App

TCP/IPTCP/IP

App

19

Applications pinned to virtual stacks.
Simple case: assign an ifnet to a jail.
Complex case: virtual interfaces, bridging, firewalls, ...

19

Jail 0

VNET 0

Jail 1

VNET 1

App

epair0bepair0aigb0 bridge0 igb1

App

TCP/IPTCP/IP

App

19

Applications pinned to virtual stacks.
Simple case: assign an ifnet to a jail.
Complex case: virtual interfaces, bridging, firewalls, ...

19

Jail 0

VNET 0

Jail 1

VNET 1

App

epair0bepair0aigb0 bridge0 igb1

App

TCP/IPTCP/IP

App

19

Applications pinned to virtual stacks.
Simple case: assign an ifnet to a jail.
Complex case: virtual interfaces, bridging, firewalls, ...

Really hard problem:
shutting down cleanly

• We’ve been doing that for years, right?

• Actually, no -- we’ve been booting for years.

• But we’ve never shut down the network.

• We just power off and it goes away. :-)

• Now we need destructors.

20

20

Status

• FreeBSD 8.0 VIMAGE “highly experimental”

• Known memory leaks on stack shutdown

• Several known crash conditions

• Many subsystems not fully virtualized

• Foundation will shortly announce new
funding for productionization work

• Goal production-quality VIMAGE in 9.1/9.2

21

21

How to give it a spin

• Update to 8-STABLE or 9-CURRENT

• Compile kernel with “options VIMAGE”

• Simple example:

jail -ci vnet path=/jail command=/bin/csh
ifconfig vlan100 vnet <id>

• http://wiki.freebsd.org/Image

• WARNING: EXPERIMENTAL

22

22

http://wiki.freebsd.org/Image/
http://wiki.freebsd.org/Image/

A few applications

• Network routing research

• Parallel overlay networks

• Large-scale hosting

23

23

Routing simulation

24

Host

Jail

VNET
Jail

VNET Jail

VNET

Jail

VNET

Jail

VNET
Jail

VNET

Jail

VNET
Jail

VNET

Jail

VNET

Jail

VNET

Jail

VNET
Jail

VNET
Jail

VNET

Jail

VNET

VNET

Trivially simulate thousands of nodes with arbitrary
topologies and fully functional, independent network stacks

24

Virtualized overlay
infrastructure

25

Host 1

VNET 0

VNET 1

VNET 2

Host 2

VNET 0

VNET 1

VNET 2

Host 3

VNET 0

VNET 1

VNET 2

Host 4

VNET 0

VNET 1

VNET 2

Host 5

VNET 0

VNET 1

VNET 2

Multiple network stacks allow router/bridge/VAP nodes to
implement complex policies using minimal hardware

25

Large-scale hosting

26

Host

VNET 0

Jail 1

VNET 1

VLAN 101

TCP/IP

FW IPSEC

Jail 2

VNET 2

VLAN 102

TCP/IP

FW IPSEC

Jail 3

VNET 3

VLAN 103

TCP/IP

FW IPSEC

Jail 4

VNET 4

VLAN 104

TCP/IP

FW IPSEC

...

igb0

Jails each have their own fully delegated connection
tables, routing tables, firewalls, IPsec, ...

26

Nested jails, with and without VNETs

Some other ideas

27

• Efficient server consolidation

• 500K memory overhead vs. 256M+ VM

• Virtualized appliances

• Multi-instance appliances, such as file
stores, firewalls, filters, ...

• Neat: Debian/kFreeBSD on VNETs

27

2MB with ZFS or nullfs providing efficient storage, before applications

Conclusion

• Virtual kernel features, such as a virtual
network stack, finally becoming a reality

• Prototype operates with increasing
stability and little performance overhead

• Adds to virtualization menu; can be
combined with other techniques like Xen

• Coming soon(ish)...

28

28

Cleverly, we are able to take advantage of many virtualization-centric hardware
optimizations.

For example: MAC address filtering with RSS.

